Assessing Omitted Confounder Bias in Multilevel Mediation Models.
نویسندگان
چکیده
To draw valid inference about an indirect effect in a mediation model, there must be no omitted confounders. No omitted confounders means that there are no common causes of hypothesized causal relationships. When the no-omitted-confounder assumption is violated, inference about indirect effects can be severely biased and the results potentially misleading. Despite the increasing attention to address confounder bias in single-level mediation, this topic has received little attention in the growing area of multilevel mediation analysis. A formidable challenge is that the no-omitted-confounder assumption is untestable. To address this challenge, we first analytically examined the biasing effects of potential violations of this critical assumption in a two-level mediation model with random intercepts and slopes, in which all the variables are measured at Level 1. Our analytic results show that omitting a Level 1 confounder can yield misleading results about key quantities of interest, such as Level 1 and Level 2 indirect effects. Second, we proposed a sensitivity analysis technique to assess the extent to which potential violation of the no-omitted-confounder assumption might invalidate or alter the conclusions about the indirect effects observed. We illustrated the methods using an empirical study and provided computer code so that researchers can implement the methods discussed.
منابع مشابه
Alternative Methods for Assessing Mediation in Multilevel Data: The Advantages of Multilevel SEM
Multilevel modeling (MLM) is a popular way of assessing mediation effects with clustered data. Two important limitations of this approach have been identified in prior research and a theoretical rationale has been provided for why multilevel structural equation modeling (MSEM) should be preferred. However, to date, no empirical evidence of MSEM’s advantages relative to MLM approaches for multil...
متن کاملAssessing mediation using marginal structural models in the presence of confounding and moderation.
This article presents marginal structural models with inverse propensity weighting (IPW) for assessing mediation. Generally, individuals are not randomly assigned to levels of the mediator. Therefore, confounders of the mediator and outcome may exist that limit causal inferences, a goal of mediation analysis. Either regression adjustment or IPW can be used to take confounding into account, but ...
متن کاملA general multilevel SEM framework for assessing multilevel mediation.
Several methods for testing mediation hypotheses with 2-level nested data have been proposed by researchers using a multilevel modeling (MLM) paradigm. However, these MLM approaches do not accommodate mediation pathways with Level-2 outcomes and may produce conflated estimates of between- and within-level components of indirect effects. Moreover, these methods have each appeared in isolation, s...
متن کاملCommentary: An Even Clearer Portrait of Bias in Observational Studies?
Commentary I nstrumental variable analysis is an increasingly popular statistical method in epidemio-logic research. 1 epidemiologists' enthusiasm for this approach may be because it can potentially estimate causal effects in observational data in the presence of unmeasured confounding. 2 This overcomes a significant limitation of conventional epidemiologic methods, such as multivariable regres...
متن کاملEstimating and Comparing Specific Mediation Effects in Complex Latent Variable Models
This teaching note starts with a demonstration of a straightforward procedure using Mplus Version 6 to produce a bias-corrected (BC) bootstrap confidence interval for testing a specific mediation effect in a complex latent variable model. The procedure is extended to constructing a BC bootstrap confidence interval for the difference between two specific mediation effects. The extended procedure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Multivariate behavioral research
دوره 51 1 شماره
صفحات -
تاریخ انتشار 2016